
Beginner's Guide to Carrier Grade Services in the Cloud

Ohad Shamir Product Manager, CloudBand, Nokia November 14th, 2017

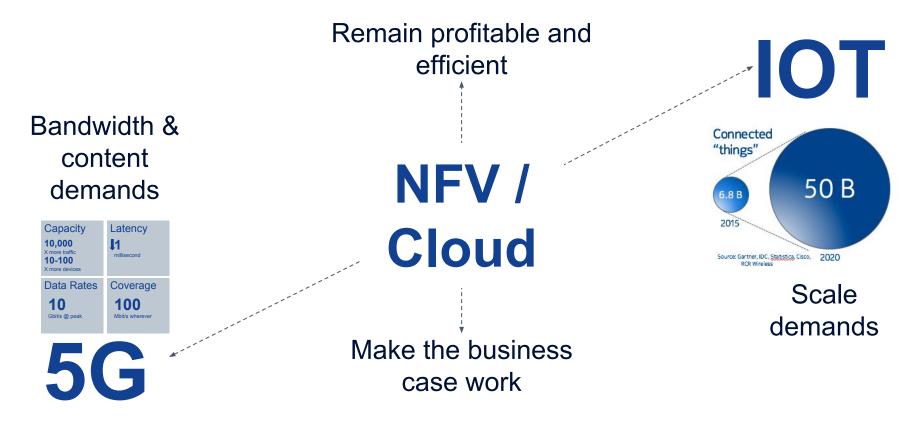
Forces Shaping the NFV Market

Main Drivers for the telco cloud Business agility drives the market

Source: Nokia market study, April 2015

"Having the agility to scale up and down instantly will allow us to be more flexible towards our customers needs. They will be able to pay for what they need, and then ask for more capacity when their app or service becomes successful"

- operator in USA


"Telco cloud has the ability to create a more efficient and a more reliable network, delivering a much better user experience to the consumer" - operator in UK

"The number one objective for telco cloud is to save on costs – both on the cost of new hardware and the costs associated to managing the network"

- operator in India

Key market shift which will need to be accommodated in your networks

Today's reality

Cloud goes commercial 2017 vEPC, vVoLTE, vCPE	Vertical: vendor-specific, service-specific clouds Pre-integrated, end-to-end, for confident first step into NFV Operators can experience digital networks, operations & benefits Vendors can focus on addressing key challenges			Stable platform, Standard & Vendor agnostic modelling, Orchestrated, automated service chains	
#1		lt v	vorks	lts e	volving
Nokia MANO commercial deployments	Live service 33% MANO deployments 66	Generic-VNFM 33% Multi-vendor MANO 28%	Fixed Gove NFV RAN	E E volP VoIP ernment Cloud Platform	<pre>} 60%</pre>
5 © 2017 Nokia					NOKIA

Decision factors Technical and business

From viable to desired

Decision factor	Viable	Desired
Approach	Turnkey pre-integrated	NFV platform
Software	Working and proven SW	Open source and vendor supported
Design, composition and cloud capacity	Single-service, single-vendor, small cloud, Over-dimensioned	Multi-service, multi-vendor, large cloud, scalable
VNFM	Specific	Generic
Orchestration	Centralized VNF LCM	Network Service orchestration

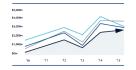
Approach

Primarily a business choice weighed against business benefits

Turnkey

© 2017 Nokia

Influenced by:


- Timeline pressure
- Design composition
- SLA transformation

NFV platform

- Reliable, capable and proven prime integrator
- Balancing between short term goals & long term vision

NFV platform's challenges do payoff:

- Flexibility in choosing suppliers
- Agility in experimenting
- Speed in rolling out new services
- Adaptability in new business models

NFV platform is ideal when:

- · Business conditions do not rule it out
- · Adding new virtualized services
- Expanding already virtualized services

Design, composition and cloud capacity

Today's vertical deployments; Tomorrow's multi-purpose clouds

Single-service, Single-vendor, Small cloud

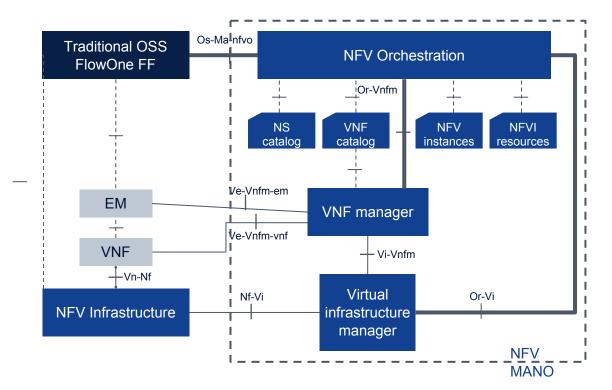
Multi-service, Multi-vendor, Large cloud

5G		
----	--	--

Service-based peak capacity funded by business manager Multi-service shared capacity relies on cost-allocation methods & internal SLAs

CloudBand Infrastructure Software

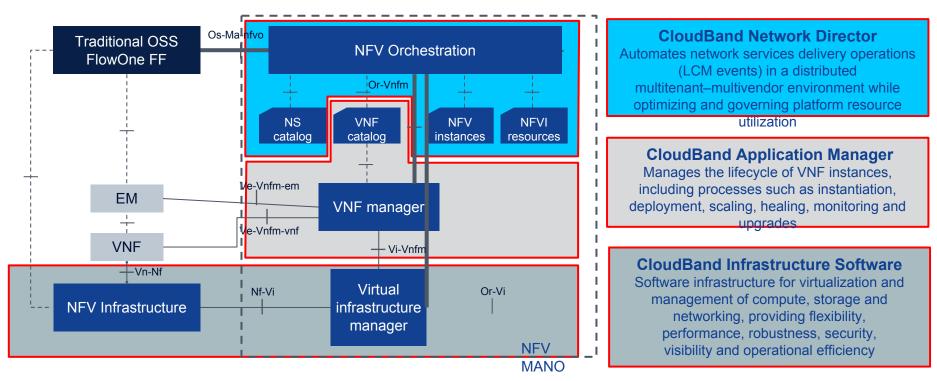
Expand current cloud asset, or build a new one?


- Service-specific demands (media, reliability, storage, security)
- Reliability & resiliency (avoid national outage)
- Geographic latency
- Traffic grooming
- Capacity planning

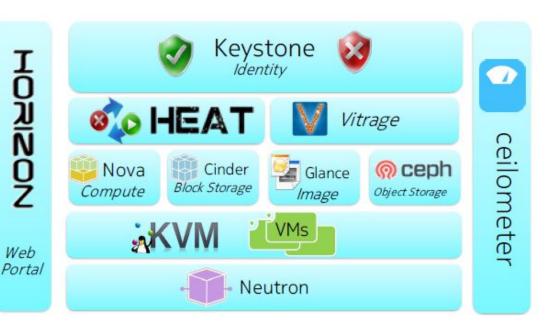
Decouple hardware capacity from service capacity:

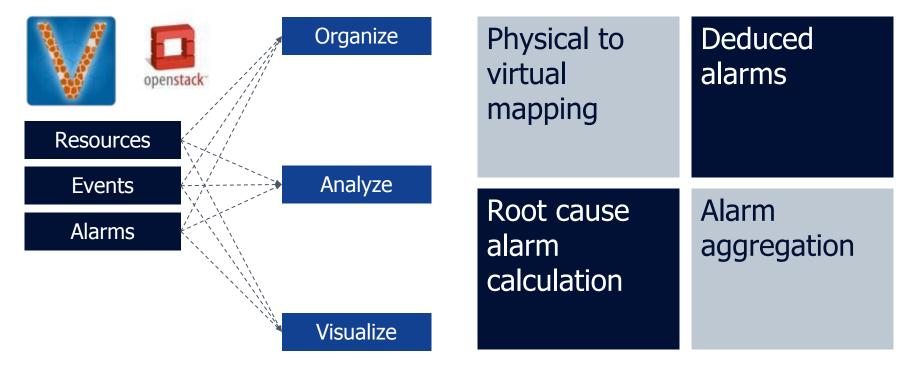
- More efficient, requires fewer overall resources
- · Unblocks capacity to experiment for what is next
- Gateway for converting silos to scalable platform

ETSI NFV-MANO Architecture Framework



ETSI NFV-MANO Architecture Framework




CBIS OpenStack Functional Architecture

- Implementing standard OS architecture – RHOSP 10 (Newton)
- Neutron based on
 - Vanilla OVS, DPDK
 - Nuage SDN
- Full HA architecture
- Vitrage project added for RCA

OpenStack Vitrage – an **official** project in OpenStack Contributing to improve OpenStack operational simplicity

OpenStack Vitrage – an official project in OpenStack Contributing to improve Stack operational simplicity

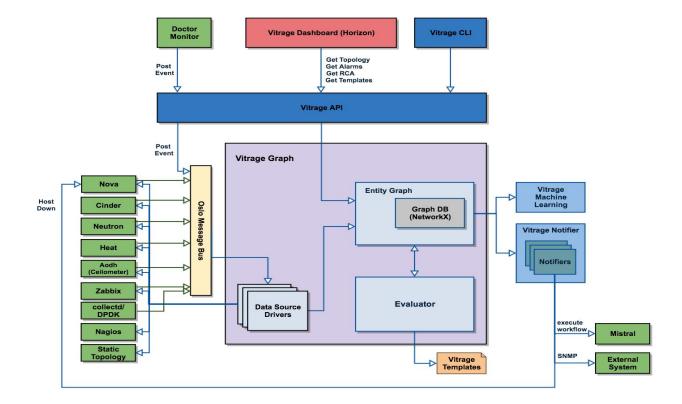
Resourc

Events

Alarms

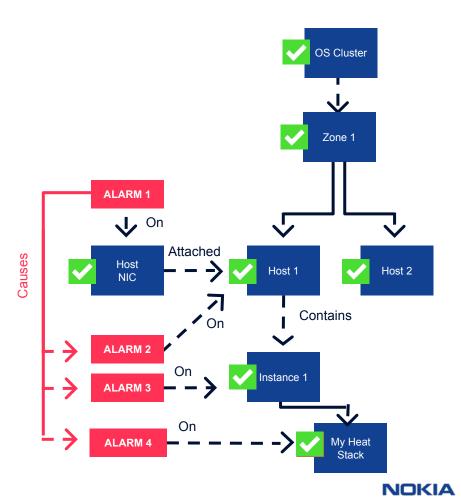
Vitrage CV

- Initiated in November 2015
- Accepted into the Big Tent in June 2016
- First official version Newton, in October 2016
- 2017 available in RDO
- 2017 Running in production



https://wiki.openstack.org/wiki/Vitrage

Vitrage High Level Architecture



Vitrage example: Host NIC failure

- Monitor host NIC (public/ tenant network) by Zabbix, raise an alarm when failed
- Vitrage will receive alarm from Zabbix, add it to the entity graph, connected to the Host NIC vertex
- Find matching scenario (template) and perform the following actions:
 - Raise deduce alarm on host (and add it to the entity graph)
 - Change host state in Vitrage (may trigger also calling Nova API to modify state)
 - Add causal link between alarms
- Once the deduced alarm on host is added, a similar flow will occur on the hosted instances
- A similar flow will occur on the Heat stack (based on VNF policy and topology as described on Vitrage template (warning, error, etc.)

The NFV Infrastructure Operational Cycle High Level Challenges

Deployment	Get set up quickly, using automatic deployment	
VNF integration	Easily get your VNFs up and running, with top performance, and no hassle, by adapting infrastructure to VNF's needs.	
Service Assurance	Detect problems and automatically correlate across the stack	
Upgrade, Maintenance	Apply well defined, tested and automated operational procedures to maintain faulty hardware, apply patches, upgrade software, and add compute / storage nodes.	

Summary

Good progress made, NFV's goals are not yet achieved

OpenStack has the maturity to scale Requires packaging & guarantees beyond vanilla open source

Operational Challenges

- Upgrade and maintenance
- More automation is needed
- More requirements for service assurance, security, etc.
- Integration with open source tools

Plenty of work ahead for the next months

CloudBand: Operationalizing the NFV cloud – reliable, automated, repeatable

